NONINCREASING DEPTH FUNCTIONS OF MONOMIAL IDEALS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monomial ideals of minimal depth

Let S be a polynomial algebra over a field. We study classes of monomial ideals (as for example lexsegment ideals) of S having minimal depth. In particular, Stanley’s conjecture holds for these ideals. Also we show that if I is a monomial ideal with Ass(S/I) = {P1, P2, . . . , Ps} and Pi 6⊂ ∑s 1=j 6=i Pj for all i ∈ [s], then Stanley’s conjecture holds for S/

متن کامل

Normalization of monomial ideals and Hilbert functions

We study the normalization of a monomial ideal and show how to compute its Hilbert function if the ideal is zero dimensional. A positive lower bound for the second coefficient of the Hilbert polynomial is shown. 1 Normalization of monomial ideals In the sequel we use [3, 11] as references for standard terminology and notation on commutative algebra and polyhedral cones. We denote the set of non...

متن کامل

Stanley Depth of the Integral Closure of Monomial Ideals

Let I be a monomial ideal in the polynomial ring S = K[x1, . . . , xn]. We study the Stanley depth of the integral closure I of I. We prove that for every integer k ≥ 1, the inequalities sdepth(S/Ik) ≤ sdepth(S/I) and sdepth(Ik) ≤ sdepth(I) hold. We also prove that for every monomial ideal I ⊂ S there exist integers k1, k2 ≥ 1, such that for every s ≥ 1, the inequalities sdepth(S/I1) ≤ sdepth(S...

متن کامل

An Algorithm to Compute the Stanley Depth of Monomial Ideals

Let K be a field, S = K[x1, . . . ,xn] be the polynomial ring in n variables with coefficient in K and M be a finitely generated Zn-graded S-module. Let u ∈M be a homogeneous element in M and Z a subset of the set of variables {x1, . . . ,xn}. We denote by uK[Z] the K-subspace of M generated by all elements uv where v is a monomial in K[Z]. If uK[Z] is a free K[Z]-module, the Zn-graded K-space ...

متن کامل

Monomial Ideals

Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2018

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089517000349